Posts tagged ‘hollow glass microspheres’

Hollow glass microspheres, also known as glass bubbles or glass beads, have a fascinating development history. Here’s a concise overview:

  1. Early Development: The concept of hollow glass microspheres emerged in the 1950s during the space race. Researchers sought lightweight materials for insulation and reducing the weight of spacecraft. In 1953, the first patent for a hollow glass microsphere production process was filed by S.S. Kistler.
  2. Manufacturing Techniques: Initially, the manufacturing process involved using a glass fiber as a template, which was heated to form a hollow shape. Later advancements led to various techniques, including spray drying, flame spraying, and air suspension methods. These methods allowed for more controlled production and improved quality.
  3. Industrial Applications: In the 1960s, hollow glass microspheres found their first industrial applications, primarily in the aerospace and defense sectors. They were used for lightweight fillers, insulation, and syntactic foams. The unique properties of these microspheres, such as low density, high strength, and thermal insulation, made them valuable in these fields.
  4. Diverse Applications: Over time, the range of applications for hollow glass microspheres expanded significantly. They found use in various industries, including automotive, construction, coatings, oil and gas, electronics, and medical sectors. These microspheres were utilized for reducing weight, enhancing insulation, improving buoyancy, modifying rheology, and achieving other desired material properties.
  5. Advanced Materials: Advancements in manufacturing processes and material formulations led to the development of specialized hollow glass microspheres. These include low-density microspheres for lightweight applications, high-strength microspheres for demanding environments, chemically resistant microspheres for corrosive environments, and surface-modified microspheres for improved compatibility with specific matrices.
  6. Ongoing Research: Continuous research and development efforts are focused on improving the properties and applications of hollow glass microspheres. Researchers are exploring new techniques to enhance the mechanical strength, thermal conductivity, and surface characteristics of microspheres. They are also investigating novel applications in energy storage, catalysis, and environmental remediation.

In summary, hollow glass microspheres have a rich development history, starting from their origins in the space race to becoming versatile materials used in various industries today. Ongoing research continues to expand their potential applications and improve their performance.

Hollow glass microspheres and glass microspheres are both small, spherical particles made from glass, but they have some significant differences.

Hollow glass microspheres, as their name suggests, are glass spheres that have a hollow interior. They are typically made by heating glass particles and a blowing agent together until the glass softens and expands, forming a hollow sphere. The walls of the sphere are thin and made of glass, and the sphere is lightweight and has a low density. Hollow glass microspheres are often used as a filler material in composites, coatings, and other materials where weight reduction is a critical factor. They can also provide thermal insulation and other properties depending on their size, shape, and composition.

On the other hand, glass microspheres are solid, non-porous glass spheres. They are typically made by melting glass and spraying or dropping the molten glass into a cooling chamber, where it solidifies into spherical particles. Glass microspheres have a smooth surface and a uniform size distribution, making them useful for applications where precise control of particle size is important. They can be used as a filler material, a grinding media, a reflective material, or as a component in optical devices.

In summary, the main difference between hollow glass microspheres and glass microspheres is that hollow glass microspheres have a hollow interior and a low density, while glass microspheres are solid and have a uniform size distribution. The choice between the two will depend on the specific application and the desired properties of the material being produced.

Hollow glass microspheres are a type of buoyancy material commonly used in deep sea applications. These microspheres are tiny, hollow glass beads that are extremely lightweight and have excellent buoyancy properties. They are typically made from soda-lime borosilicate glass and have a diameter that ranges from 1 to 300 microns.

In deep sea applications, hollow glass microspheres are often used to create syntactic foam, which is a type of composite material that is designed to have a low density and high buoyancy. The microspheres are mixed with a polymer resin to create a foam that is strong, lightweight, and resistant to water absorption and chemical corrosion.

Syntactic foam made with hollow glass microspheres is often used to create buoyancy modules for underwater equipment, such as sensors, cameras, and instrumentation. The foam provides enough buoyancy to keep the equipment afloat in the water, while also protecting it from the harsh underwater environment.

Overall, hollow glass microspheres are an excellent choice for deep sea buoyancy material due to their lightweight, buoyant properties and resistance to water and chemical corrosion.

Hollow glass microspheres (HGMs) are not generally considered harmful to human health. They are small, lightweight particles made of glass, typically ranging in size from 1 to 100 microns in diameter. HGMs are commonly used as a lightweight filler material in a variety of applications, including paints, coatings, adhesives, and composites.

Several studies have evaluated the potential health effects of exposure to HGMs, and the results have generally been reassuring. The available evidence suggests that HGMs are not likely to cause significant harm to human health when used as intended.

Inhalation is the primary route of exposure to HGMs, and studies have shown that the particles are generally not respirable, meaning they are too large to enter the lungs and cause damage. Some studies have reported minor respiratory effects in animals exposed to high levels of HGMs, but these effects were generally reversible and not considered significant.

There is also no evidence to suggest that HGMs are absorbed into the body through the skin or gastrointestinal tract, as they are inert and do not react with biological tissues.

That being said, like with any material, it is important to handle HGMs safely and in accordance with applicable regulations. Manufacturers of HGMs typically provide guidelines for safe handling, storage, and disposal of their products, and it is important to follow these guidelines to minimize the potential for exposure and ensure safe use.

During the process of bilateral cooperation, Lu Jianping said that everyone has never been “red faced”. “Even if we encounter some problems, it is our main line to communicate quickly and clearly, maximize cooperation, minimize disputes, and achieve harmonious development.”

Jingjiang in late spring ushered in another continuous drizzle. Although this is a weekend, Song Guangzhi, who arrived overnight from Beijing, did not come here to enjoy the spring scenery along the Yangtze River. He quickly finished his breakfast and immediately began the day’s work.

Song Guangzhi is a researcher of the Institute of Physical and Chemical Technology of the Chinese Academy of Sciences (hereinafter referred to as the Institute). He and his colleague Zhang Jingjie led the team to put the industrial work of the hollow microsphere project here. In January 2013, the Institute of Physical and Chemical Technology and the local enterprise Jiangsu Huaxing Heavy Industry Machinery Manufacturing Co., Ltd. jointly established Zhongke Huaxing Jingjiang New Material Engineering Co., Ltd.

The purpose of his trip is to provide on-site technical guidance to the Zhongke Huaxing workshop.

“We both have quite high expectations for the cooperation of this project,” Lu Jianping, General Manager of China Science Huaxing, said in an interview with China Science Daily. “Currently, we are advancing in the expected direction in an orderly manner, and we believe that we will succeed in the future.”

“Love at first sight”

Lu Jianping said that as a business owner, he hopes that the cooperation with scientists from the Chinese Academy of Sciences will bring not only economic benefits, but also social benefits.

With the support of the national “863” plan, the hollow glass microbeads project developed by the Institute of Physics and Chemistry has independent intellectual property rights. In today’s era of increasing attention to environmental issues, the introduction of environmentally friendly new materials into the market is a positive response made by enterprises and research institutes.

After encountering the hollow glass micro bead project of the Institute of Physics and Chemistry, CSHI is facing the challenge of enterprise transformation and upgrading.

A series of factors, such as the appreciation of the RMB, inflation, rising labor costs, and the international financial crisis, continue to stimulate the nerves of domestic small and medium-sized enterprises, affecting the development of some small and medium-sized enterprises to a large extent. Many enterprises are facing unprecedented difficulties and challenges in their production and operation.

Although Huaxing Heavy Industry is not here yet, it hopes to take precautions. “Therefore, transformation and upgrading have been put on our agenda,” Lu Jianping admitted. This time, he will lead the team to take the path of “innovation main body”.

In 2012, a trip to Beijing for scriptures became a transfer. At that time, the Jingjiang Science and Technology Bureau led a team and led dozens of Jingjiang enterprises to investigate projects at several research institutes of the Chinese Academy of Sciences.

After arriving at the Institute of Physics and Chemistry, a leader of the Jingjiang Science and Technology Bureau discovered that the entrepreneur around him, Lu Jianping, had “disappeared.”. It turned out that he had a crush on the hollow micro bead project of Song Guangzhi and Zhang Jingjie at a glance, and had already started the industrialization discussion together with scientific researchers.

“We are grafting advanced technology from the Chinese Academy of Sciences at a high level, aiming to create an energy-saving and environmentally friendly building material industrialization base, and seeking a breakthrough in self transformation,” he said.

Small beads with high energy
Therefore, through the Jingjiang Municipal Bureau of Science and Technology, Huaxing Heavy Industry and the Institute of Physics and Chemistry were engaged in a marriage. “This has also become one of the key factors that our cooperation can achieve,” Lu Jianping said.
Under a high-power electron microscope, high-performance hollow glass microspheres appear to be crystal clear hollow glass beads. Due to this unique structure at a very small scale, hollow glass beads have become a new type of lightweight material with extensive uses and excellent performance that has been developed in recent years.
Song Guangzhi and Zhang Jingjie have developed advanced preparation techniques for hollow glass microspheres over the past decades. In December 2006, the technical achievement of “surface modification of hollow glass beads” passed the appraisal jointly organized by relevant departments and the Chinese Academy of Sciences.
Since then, with the continuous support of projects such as the National “863” Plan, the Institute of Physics and Chemistry has continuously deepened its research on hollow glass microspheres, optimized its preparation technology and production process, and continuously improved its product performance.
The research results of hollow glass microspheres have been gradually improved, laying a solid foundation for industrialization. For China Science and Technology Huaxing, the purpose of industrialization is very clear. “We have conducted multiple surveys and tests to determine the main development route of environmentally friendly building materials,” Lu Jianping said.
Although any new product needs to undergo a period of testing to enter the market, he is confident: “Currently, there are not many environmentally friendly building materials on the market, which is a great opportunity for us to enter the market.”
Lu Jianping said that currently, partners have used and tested Zhongke Huaxing’s products, and customers are very excited about Zhongke Huaxing’s products.
“Two sets of thinking” do not exist
During the process of bilateral cooperation, Lu Jianping said that everyone has never been “red faced”. “After we encounter some issues, we quickly communicate clearly to maximize cooperation and minimize disputes. Harmonious development is our main line.”
Lu Jianping disagrees with the statement that scientists and entrepreneurs have “two sets of thinking modes” and hinder the cooperation between scientific research institutions and enterprises: “because what we pursue in cooperation is win-win.” It is true that the thinking of scientific researchers is more inclined to the progressiveness of achievements; The thinking of enterprises is more biased towards cost control. “But there is no conflict between the two. The progressiveness nature of the results does not mean that the cost is increased or uncontrollable. On the contrary, it can promote production process innovation and achieve the effect of reducing costs.” Lu Jianping said.
On the other hand, Zhongke Huaxing’s business thinking is not blindly pursuing profit maximization. “We have a long-term strategic plan, and maintaining the progressiveness of scientific research achievements is the constant purpose in our enterprise development plan.” He said.
In the cooperation, the Institute of Physics and Chemistry and China Science and Technology Huaxing understand each other and learn from each other’s strengths to complement each other. What the enterprise possesses is business strategy and practical experience, while what the scientific research institutions possess is the basic conditions for conducting research work, advanced technology, and scientific logical thinking methods. The combination of the two will greatly contribute to the long-term development of both sides.

ARTICLE SOURCE: China Science Daily

1. The alkaline lime borosilicate ingredients of the glass microspheres make it stable and inertia for its chemical properties, which gives them safely as a filler or as an additive, without worrying Can resist other chemical corrosion other than strong alkali.
2. The perfect spherical shape gives them excellent consistency, so that after processing, it will not cause warning and contraction due to inconsistent stress.
3. The hollow glass micro -ball is a tiny ball. In the liquid, the action -like micro -rolling bearing bearing should be more liquid than the fillers of the chip, needle, or irregular shape. Decreasing the viscosity of the mixture, the performance of the model is naturally excellent; good processing performance can increase production efficiency by 10%to 20%.
4. The perfect spherical shape makes it have a small ratio of Z, so its oil absorption is low. Compared with the conventional filling material calcium carbonate, the fuel absorption rate/volume of hollow glass microspheres is much lower, and different types of products are 100 grams per 100 grams The oil absorption rate is between 7 and 40 mg, while the oil absorption rate per 100 grams of light calcium carbonate is as high as 120 to 130 mg, and the heavy calcium carbonate is as high as 50 to 60 mg. The amount of resin is reduced, and at the same time, because it can play a role in increased liquidity of the resin, the resin can only be processed as a substrate rather than the filler, which also reduces the amount of resin.
5. Due to the particle size distribution of glass microspheres, small microspheres fill the gap of large microspheres, which increases its solid content. At the same time, its volatile capacity is very low, which reduces VOC.
6. The color is white, so it has good color compatibility.
7, very low real density and strong compressive strength, resulting in its high compressive strength density ratio, which makes it in some applications that require high pressure resistance, such as squeezing, pressing, or pressurizing, or pressing, or pressing, or pressing, or pressing, or pressing, or pressing, or pressing, or pushing, or pushing, or The oil industry can not only play the role of fillers or additives that density density, but also enable it to have a good survival rate and stability in the processing process
8. The particle size is small, and it may not reduce its toughness when mixing with the resin.
9: The interior of the hollow glass microsphere is a vacuum and thin gas. There are poor density and heat conduction coefficients in two different materials. Therefore, it has the characteristics of sound insulation, heat insulation, and low heat conduction. Fill. The thermal insulation characteristics of microspheres can also be used to protect the heat shock caused by alternating changes between the products and the cold conditions of the product.


10: The closed rate is very high, the spherical shape is tight and perfect, and it is insoluble in water, so that its application in the water is also very stable, and the water will not enter the inside of the microsphere. Therefore It is insoluble in water, and its applications in water such as yachts and rowing are also extremely stable.
11: As a test shows that the fillers of hollow or low hardness will absorb and digest the impact intensity when they are impacted, which improves the impact performance of the material. Therefore, it can improve the physical and mechanical properties of plastic products. At the same time, its filling plastic can greatly increase the hardness and elastic modulus of the material, and the ability of stiffness and stress damping has also improved.
12: It can maintain its stability below 600 degrees, so it is also stable in some applications that require a slightly higher temperature.

ARTICLE SOURCE : SHANGHAIHUIJING

The impact of micro -pearl powder in the plating fluid on chemical silver plating
In order to eliminate the single -quality silver in the middle of the powder, the amount of plating powder is used to reduce the silver content in the plating powder. Figure 6 shows the overall powder of 20%of the AG content and the surface shape of a single powder. Compared with Figure 6 (a) and 4, it can be seen that with the increase of the amount of powder coverage, the single silver from the pink decrease significantly. This is because the larger the loading capacity, the larger the surface area, the more the core of the silver nucleus, which reduces the appearance of silver single. From Figure 6 (b), it can be seen that except for a few silver particles on the surface of the powder, the size is basically about 50 nm, which is related to the increase in the surface area of ​​the powder and the increase in the area of ​​silver -shaped nuclei, which is related to the increase in the number of cores. Because in the same amount of silver analysis, the larger the number of silver cores, the shorter the core of the core, and the result is reduced to the silver particle size plated on the surface.
in conclusion

The chemical silver plating of hollow glass microspheres is prepared to prepare the hollow glass micro beaded powder with a dense and continuous coating layer. The thickness of the coating layer is about 50 nm. Energy characteristics. At the same time, the effect of chemical silver -plated process parameters on the silver -plated silver plating of hollow glass, and found that:
1. By increasing the content of NAOH in the plating solution. Increasing the P field value of the plating liquid can increase the amount of silver analysis in the plating solution, the coating of the micro -bead surface is more dense and continuous, but there is a single -quality silver with free states;
2. Stabilizer can improve the self -decomposition of the plating fluid, but it has little effect on the uniformity and thickness of the coating of the microfin surface. On the contrary, when the amount of stabilizer is too large, it will also cause the unevenness and denseness of the surface covering layer;
3. By adjusting the loading capacity of the hollow glass microsphere, it can adjust the particle size of the surface of the silver particles, control the thickness of the silver -plated layer, and increase the loading capacity at the same time, which can also reduce the phenomenon of self -decomposition.

Glass microspheres are divided into hollow glass microspheres and solid glass microspheres

1. The main application fields of solid glass microbeads are:
1. Road reflective glass beads:


Road reflective glass beads are divided into internal mixing type and surface scattering type. The internal mixing type is mixed in the paint during the production of road reflective paint, which can ensure the long-term reflection of road markings within the life period.
The surface sprinkler type is used in road marking construction to spread on the surface of the marking line to achieve an instant reflective effect. Road marking glass beads are divided into two specifications: coated and non-coated. Surface-treated coated glass beads are used in road marking construction, which can greatly improve the adhesion between the glass beads and the road marking paint. , Water resistance, enhance the reflectivity of road markings, and have self-cleaning, anti-fouling, moisture-proof and other uses.

 

2. Shot peening glass beads:


Shot peening glass beads Glass beads used for industrial shot peening and additives can be used on metal surfaces and mold surfaces without damaging the surface of the workpiece and improving the accuracy of the workpiece. It is used for cleaning and polishing of metal metal, plastic, jewelry, precision casting and other objects. It is a high-grade finishing material commonly used at home and abroad.

 

 

 

 

3. Grinding glass beads:


Grinding glass beads have the advantages of good chemical stability, mechanical strength and hardness, surface finish, good fluidity, low abrasion, easy industrial and mining control, etc. As abrasive materials, they are widely used in chemical materials, coatings, pigments, food, medicine and other fields.

 

 

 

 

 

4. Glass beads for decoration:


Glass microbeads, glass sand and colored glass microbeads for handicrafts are ideal materials for garment printing, garment heat transfer, Christmas tree surface decoration, artificial fruit, artificial flower crafts surface decoration, and hourglass quicksand manufacturing.

 

 

 

 

 

5. Filling:


Glass beads are also widely used as a new type of material in various fields such as medical equipment and nylon, rubber, engineering plastics, and aviation. Such as additives, enhancers and so on.

 

 

2. The main application fields of hollow glass microspheres are:


1. The color is pure white, which can be widely used in any products that have requirements on the appearance color.
2. The specific gravity is light, and the density of hollow glass microspheres is about one tenth of the density of traditional filler particles. After filling, the basis weight of the product can be greatly reduced, more production resins can be replaced and saved, and the product cost can be reduced.
3. Lipophilic, hollow glass microspheres are easy to wet and disperse, and can be filled in most thermosetting thermoplastic resins, such as polyester, epoxy resin, polyurethane, etc.
4. Good fluidity. Since hollow glass microspheres are tiny spheres, they have better fluidity in liquid resins than flake, needle or irregular fillers, so they have excellent mold filling performance. More importantly, the small microbeads are isotropic, so there is no disadvantage of inconsistent shrinkage rates in different parts due to orientation, which ensures the dimensional stability of the product and will not warp.
5. Heat and sound insulation, the hollow glass beads are thin gas inside, so it has the characteristics of sound insulation and heat insulation, and it is an excellent filler for various thermal insulation and sound insulation products. The insulating properties of hollow glass microspheres can also be used to protect products from thermal shock caused by alternating between rapid heating and rapid cooling conditions. High specific resistance and extremely low water absorption make it widely used in the production of cable insulation materials.
6. The oil absorption rate is low. The particles of the sphere determine that it has the smallest specific surface area and low oil absorption rate. During use, the amount of resin can be greatly reduced. Even under the premise of high addition amount, the viscosity will not increase a lot, which is greatly improved. The production operating conditions can be improved, and the production efficiency can be increased by 10% to 20%.

Article Source:HS glass beads

RTP Company announces the availability of specialty compounds containing hollow glass microspheres which reduce part weight, enhance properties and lower part costs in demanding applications.

High loadings of these microspheres, which are manufactured by 3M and known as ScotchliteTM Glass Bubbles, can be added to thermoplastics to reduce overall part weight, and thus per part material costs. Additionally, they can modify polymer characteristics, achieving lower viscosity, improved flow, and reduced shrinkage and warpage.

For example, some compounds containing ScotchliteTM Glass Bubbles can have their specific gravity reduced by as much as 30 percent. The use of glass bubbles also provides more uniform control and reproducibility than other methods typically used for weight reduction, such as foaming agents.

ScotchliteTM Glass Bubbles reduce thermal conductivity and lower dielectric constants of most thermoplastics. Non-combustible and non-porous, the glass bubbles do not absorb moisture. Compounds containing ScotchliteTM Glass Bubbles are available in most engineering resins and easily adapt to common processing methods, including injection molding and extrusion. Applications that can benefit from this weight saving technology exist in the aerospace, automotive, marine, electronic, and medical industries.

FROM:RTP Company

In order to give full play to the effect of hollow glass microspheres, it is necessary to ensure that the hollow structure remains intact during the addition process. The strong shear in the twin-screw extruder can easily break the glass beads. Once the hollow glass beads are broken, they will become glass fragments with a density of 2.5g/cm3, which cannot achieve weight reduction. This is also the main reason why many application products did not achieve the desired effect in the initial stage of the experiment.
Therefore, how to reduce the breakage rate of microbeads in the twin-screw extruder granulation process is the key to the excellent performance of hollow glass microbeads.
Specifically, it can be considered from the extruder thread combination, feeding and pelletizing method, main engine speed, and compressive strength of microbeads.

01 . Adjustment of twin screw thread combination

 

 

In a twin-screw extruder, the shear force of the screw on the material makes the filler evenly dispersed. The spherical shape of the microbeads is easier to disperse, and excessive shear force can easily cause them to break. Therefore, the angle of the thread block of the meshing section should be adjusted, and the shear force should be reduced according to the low shear design. The specific adjustment method is as follows (real shot by St. Wright Laboratory):

 

 

 

 

 

 

After improving the thread combination
Comparison of crushing rates caused by different feeding methods and granulation methods

 

 

 

02. Adjustment of feeding method
To better reduce the bead breakage rate, you should:
1) Select side feeding to reduce the chance of microbeads being sheared in the screw.
2) Select long particles for granulation to reduce the damage of strong mechanical force during granulation.
After improving the thread combination
Comparison of crushing rates caused by different feeding methods and granulation methods

 

 

 

 

Remark:
1. Sanlight HS46, compressive strength: 16000psi, D90 (typical value) 30μm, specific gravity 0.46g/cm3.
2. Sanlight HL60S, compressive strength: 18000psi, D90 (typical value) 55μm, specific gravity 0.60g/cm3.

03. The influence of the rotational speed of the twin-screw machine
When the rotation speed is high, the shear force on the material is greater, which makes the microbeads more easily broken. Therefore, under the premise of ensuring the production process, reduce the speed and reduce the shear force of the screw.
After improving the thread combination, long particle granulation and side feeding conditions
Comparing the crushing rate caused by different screw speeds

 

 

 

When the content of microbeads is about 10wt%, the crushing rate of microbeads increases with the increase of screw speed, and the crushing rate rises to 7.23% at 400r/min.

04. Common problems and solutions

 

 

 

 

 

1) What is the normal breakage rate of microbeads during extrusion?
Due to the problem of the processing method, the microbeads will have a certain breakage rate during the extrusion process.

Optimization:
Adjust the screw combination, add microbeads to the side feed, granulate long particles, and the crushing rate can be controlled at 2-3%.

2) Does the addition of microbeads affect the resin processing performance?
Microbeads are an inorganic powder filler, similar to other inorganic fillers, which can improve the heat resistance of the resin after adding. Therefore, the processing temperature is increased.

solution:
1. The extruder is at the original processing temperature;
2. Add a small amount of lubricant to the formula to solve.

3) After the microbeads are fed from the side, how to ensure the uniformity of feeding?
solution:
1. Side feeding chooses twin-screw forced feeding;
2. A stirring rod should be added to the side feeding to prevent microbeads from “bridging” and ensure uniform feeding.
4) Will the mechanical properties of the resin drop significantly after adding microbeads?
Part of the impact performance will be sacrificed after adding microbeads, but part of the flexural modulus can be improved.

ways to improve:
1. Add a small amount of toughening agent;
2. Modify the surface of the microbeads with a coupling agent to improve the binding properties of the microbeads and the resin.
In addition, the compatibility of hollow glass microspheres with resin is not good, and the interfacial adhesion between resin and glass microsphere material will become poor, which will greatly reduce the performance of hollow glass microspheres, so improve the interfacial adhesion between them. Compatibility is very important.

Commonly used methods to improve compatibility include:
(1) Add compatibilizer: use coupling agent or maleic anhydride graft resin to improve the interface adhesion between the two;
(2) Surface etching: using acid and alkali to produce a large number of defects on the surface of the microbeads, at this time, the resin will be filled into the defect gap to achieve a stable effect;
(3) Surface modification: Through the reaction of strong oxidants and or acid-base and SiO, compatible functional groups such as silicon carboxyl groups and hydroxyl groups are generated; these functional groups can also be modified, and these modified functional groups can be grafted, polymerization and other reactions. Thereby improving the interfacial adhesion.

FROM: Eighth Element Plastic Edition