Posts tagged ‘Hollow spheres’

Hollow glass microspheres, sometimes termed microballoons or glass bubbles, have diameters ranging from 10 to 300 micrometers. Hollow spheres are used as lightweight fillers in composite materials such as syntactic foam and lightweight concrete. The hollow glass bead is a kind of specially processed glass bead, which is mainly characterized by smaller density and poorer thermal conductivity than glass bead. It is a new kind of micron-grade light material developed in the 1950s and 1960s. Its main component is borosilicate, with a general particle size of 10~250μm and a wall thickness of 1~2μm. Hollow glass beads are characterized by high compressive strength, high melting point, high resistivity, small thermal conductivity and thermal shrinkage coefficient, etc., and they are known as the “space-age material” in the 21st century.
Hollow glass microspheres, also known as bubbles, microbubbles, or micro balloons, are usually formulated from borosilicate – sodium salt glass mixtures and offer the advantages of low density, high heat and chemical resistance. The walls of glass microspheres are rigid and are usually about 10% thick of the diameter of the spheres. At present, spherical particles have a wide range of densities, from as low as 0.06g/ C3 to as high as 0.80g/ C3, with particle sizes ranging from 5um to 180um. The compressive strength of the hollow sphere is determined by the wall thickness of the hollow sphere and, as expected, the greater the density of the sphere, the higher the compressive strength.The lightweight hollow glass sphere is chemically stable, non-flammable, non-porous, excellent water resistance.

Product Performance of Hollow Glass Sphere:
Hollow glass microspheres are micron-level hollow glass microspheres with a smooth surface. The main chemical component is borosilicate glass, and it is a hollow transparent sphere under the electron microscope. Hollow glass beads have low density, high strength, high temperature resistance, acid and alkali resistance, low thermal conductivity, electrical insulation and other properties. They have good fluidity and chemical stability, and they are multi-functional frontier new materials across fields.