The production of hollow glass microspheres is part of an ongoing research and development program started in 1974. And aimed at developing a method for mass producing glass fuel containers for use in inertial confinement fusion (ICF) experiments. Several previous reports have described the development of the liquiddroplet technique for the production of hollow glass microspheres.

In this paper, ive review previous data along with tie results from our more recent studies to present a detailed picture of the preparation method and properties of the hollow glass microspheres. The production of the high-quality hollow glass microspheres needed for laser fusion targets requires us to optimize a number of processing parameters.

In the past, we used a largely empirical approach to determine the proper operating conditions. Although this approach was successful, it was also time consuming and manpower intensive. To help guide and interpret our present experimental work, we have developed a simple, onedimensional (1-D) model to simulate the sphere formation process.

The model has been used to quantify the effects of several key process variables such as the column temperature profile, purge-^as composition, droplet size and composition, and glass film properties.

This article comes from osti edit released