Silane-treated hollow glass microspheres offer additional performance improvements. A silane coupling agent acts at the interface between an inorganic substrate, like hollow glass microspheres, and an organic polymer to bond, or couple, the two dissimilar materials.

Very destructive to adhesion is migration of water to the hydrophilic surface of the inorganic glass filler. Water attacks the interface, destroying the bond between polymer and filler. But a true coupling agent creates a water-resistant bond at the organic/inorganic interface. Silane coupling agents not only enhance bond strength but also prevent de-bonding at the interface during composite aging and use.

Notched Izod impact, tensile and flexural strengths and elongation at break all show much better properties when a coupling agent is applied to the microsphere filler. In general, notched Izod and tensile strength improve by about 40% when comparing silane-treated and untreated hollow glass microspheres. In addition, silane treatment slightly enhances the density reduction obtainable with microspheres, because the silane provides a lubricious surface layer that reduces microsphere breakage during compounding.

Adding silane treatment further increases the advantages of the newest, strongest microspheres. The most significant property improvement is in elongation at break. Here, there is almost 300% improvement from 35% elongation at break for silane-treated S60HS microspheres to 100% for silane-treated iM30K additives.

This article comes from ptonline edit released

White roof coatings have existed in hot countries for a long time. These coatings help to reflect solar energy back into the atmosphere, rather than heating up the building. To achieve this white finish, pigments and fillers like titanium dioxide and calcium carbonate are used.

This article demonstrates that, with the use of hollow glass microspheres in a coating, one can achieve a high level of total solar reflection with the dry film. This helps to reduce the need for energy-intensive cooling systems.

It is worth noting that there are many coating applications possible with this technology and that it is not just restricted to improving the energy efficiency of buildings. Other examples that would benefit from the use of solar heat reflective coatings include caravans, mobile homes, cold storage distribution centres, refrigerated vehicles, oil and gas storage tanks, cryogenic tanks and tankers, and deck coatings.

Total solar emission is shown in the spectrum below. It comprises UV, visible and IR radiation – the latter responsible for heating. In this article, we will show that hollow glass microspheres offer an excellent level of reflection in both the visible and IR regions of the spectrum.

This article comes from l-i edit released

Finding methods for improving efficiency and bioavailability is central to targeted drug delivery. While controlled release dosage medication forms are the norm, they can encounter many limitations. One disadvantage is the difficulty of locating and retaining the drug delivery system within the gastrointestinal (GI) tract due to gastric emptying variation. This can cause drug release that is insufficient for the patient or result in shorter residence time of the dosage in the stomach.

To increase gastric retention and improve drug absorption, hollow glass microspheres have been developed and applied in the clinical setting for certain patients. Porous-wall hollow glass microspheres used in medicine are often produced from biopolymers, ceramics, bioactive glasses, and silicates. Hollow glass microspheres feature a 10 to 100 micron-diameter hollow cavity for the containment of certain substances.

The most predominant mode for drug administration to the systemic circulation is the oral route. Some drugs have difficulty absorbing through the GI tract when using this route, prompting professionals to seek alternative methods for delivering pharmacologically active substances to the body.

The porous or hollow features of hollow glass microspheres offer the ability to encapsulate fragile drugs and provides protection from biological compounds that may interfere with drug availability. These spherical, empty particles can remain in the gastric region for long periods of time and extend residence time of drugs in the GI tract.

Porosity offers improved loading efficiency and helps control the release of medications. Overall, hollow glass microspheres improve bioavailability of a drug, thereby reducing drug waste.

Hollow glass microspheres can be produced to feature a uniform shape and size that can improve delivery of spheres to a specific target site. Additionally, hollow glass microspheres are an ideal candidate for carriers of therapeutic agents due to their porosity, large surface area, and volume.

The hollow center of the hollow glass microspheres reduces their density to such a degree that they have the potential to be buoyant. This behavior makes hollow glass microspheres suitable for use in a wide variety of applications.

This article comes from mo-sci edit released

The concept of using hollow glass microspheres as a hydrogen storage medium has been known for some time. Hydrogen diffuses through the thin wall of the hollow glass microsphere at elevated temperatures and pressures. The gas is then trapped upon cooling to room temperature.

The ability of hollow glass microsphere to safely store compressed hydrogen gas is a major advantage. Howev er, a traditional limitation of hollow glass microsphere has been the poor thermal conductivity of a packed bed of hollow glass microsphere; poor conduction of heat translates to unsuitably low release rates of hydrogen gas.

As we all know, the reflective film is widely applied in advertising, traffic area, safety application. There are two main types, hollow glass microsphers, and micro-prismatic. Now we’re going to show the Principles of the two types.

1) Engineer Grade Hollow Glass Microsphers Reflective Tape– Type 1

EG retro-reflective tape is a type 1 material with hollow glass microsphers providing the reflection. Which is recommended for viewer within 50 yards of the tape.

2) High-Intensity Hollow Glass Microspher Reflective Tape-Type 3

The high-intensity grade hollow glass microsphers are contained in little honeycomb chambers with an air space above them. This arrangement makes for a brighter tape. Recommended for applications where the viewer is within 100 yards of the tape.

Micro-prismatic – ( Non Metalized Micro-Prismatic / Metalized Micro-Prismatic )

1) Non Metalized Micro-Prismatic Reflective Tape– Type 4

The non-metalized micro-prismatic tape is made by laminating a layer of prismatic film onto a honeycomb grid and white backing.This film is visible from much farther away than high intensity or engineer grades.

2) Metalized Micro-Prismatic Reflective Tape– Type 5

Metalized micro-prismatic reflective film is coating the back of a micro-prismatic layer with a mirror coating and then applying adhesive and a release liner to the back. This material can be used for various areas as well as those where the viewer is in more than 100 yards from the sheeting. In most cases, it can be seen from over 1000 feet away. Which make it excellent for highway applications or where the tape will be shining through snow or rain.

Hollow glass microspheres filled poly(acrylonitrile-co-butadiene-co-styrene) (ABS) composites were prepared by means of a twin-screw extruder. S038 hollow glass microspheres were incorporated at different percentages of 2.5, 5.0, and 7.5 wt%.

The hollow glass microspheres were added into the twin-screw extruder at two different feeding zones, and the effect of hollow glass microspheres loading and specific feeding zone addition on the composites produced was evaluated with regard to morphological, thermal, rheological, physical, and mechanical properties. As a result, the composite density was reduced while the thermal stability, storage modulus, complex viscosity, and tensile and flexural modulus were improved when compared with the ABS matrix.

The results also indicate that the addition of 5.0 wt% of hollow glass microspheres at the feeding zone closer to the die maintains the integrity of the hollow glass microspheres and promotes composites with higher mechanical properties and lower density when compared with the composites obtained with the addition of hollow glass microspheres closer to the hopper.

This article comes from hindawi edit released

Hollow Glass Microspheres Market size was USD 1,938.3 million in 2019 and will grow at a CAGR of 4.4% from 2020 to 2026. Rising demand of energy efficient buildings and reducing greenhouse gas emission will positively impact on increase product demand over the forecast timeframe.

Hollow glass microspheres are also known as bubbles, microbubbles and micro-balloons. These are typically made of borosilicate-soda lime and offer various benefits such as low density, chemical resistance and high heat. Glass microspheres walls are quite rigid and have a thickness of over 10% of overall diameter of a sphere.

Based on application, the market is classified into paints & coatings, plastics, composites & rubber, transportation, insulation & buoyancy, healthcare, and others. The industry is likely to witness a high demand in Russia, China, Brazil, and India owing to the growing manufacturing sector and heavy infrastructure spending. Latin America is also forecast to achieve a high growth rate over the forecast period owing flourishing to oil & gas industry in the region, which offer lucrative growth opportunities to the major players of global hollow glass microspheres market.

Increasing demand for reduction of greenhouse gas emissions is the major factor responsible for rising adoption of hollow glass microsphere systems worldwide. Multiple countries have implemented a variety of policies for mitigating greenhouse gas (GHG) emissions. Various countries have enacted legislation by establishing greenhouse gas emissions reduction, which requires state agencies to report GHG emissions. Several American states, such as North Carolina, New Mexico and Pennsylvania, have recently committed for reduction of GHG reduction emissions through executive action plans.

This article comes from gminsights edit released

Many authors have investigated spherical resonators with WGMs. Relatively early investigations from theoretical and experimental views were published in the literatures. Furthermore, transmission characteristics of optical fibers including taper fibers have also investigated theoretically. Hollow glass microspheres were successfully pumped by hollow-glass fiber tapers and showed high-Q factors (quality factors) >109, where the matching between WGMs of hollow glass microspheres and transmission modes of fiber-tapers was inevitable for laser performance.

Nowadays, [fiber tapers]/[hollow-glass spheres] system was well established experimentally in a laboratory scale and theoretical background was understood satisfactory. As pointed out in the literature, however, from the theoretical point of views, hollow glass microspheres and optical coupling devices such as a fiber taper should have nearly equal refractive index for satisfying the mode matching. Moreover, fiber tapers, unclad and unsupported waveguides, are very fragile.

Therefore, if we have plans to open up a way to use the wide possibilities of hollow glass microspheres of various compositions, development of the pumping techniques that is conventional and applicable for commercial uses is an urgent issue. Similarly, tailoring the glass composition is requested for obtaining desirable physical and chemical properties from their wide-spreading properties. Our works on the high-index glass spheres aim at giving one of the answers to the issues: two pumping techniques are applicable to the practical uses and the multicomponent high-index glass is chosen to explore the possibilities. In terrace hollow glass microspheres, for obtaining high resonant emission, refractive index difference between the sphere and the terrace portion (nsphere/nterrace = nr > 1.3) is inevitable.

The pumping experiment of high-index spheres using a half-polisher fiber coupler showed the improvement of optical coupling by high-refractive-index film (nD = 1.73) coating on the polished core. These results were not explained by the above-mentioned theoretical consideration of the [fiber tapers]/[hollow-glass spheres] system. Theoretical support for our new experimental techniques is the next important issue to make advance in practical applications.

This article comes from sciencedirect edit released

Hollow glass microspheres can be used in numerous applications; as an adjusting aid and distancing element of electricity-conducting single components, in microelectronic mechanics, as an abrasion-deterring element in grating components, in mechanical engineering, and as a material for artistic surface design.

A New Adhesive System

The Controltac adhesive system is an innovation in the area of large format graphic films. In this system, approximately 50 µm strong films are equipped. In addition to the adhesive, millions of microscopic (40 up to 50 µm diameter) hollow glass microspheres are utilized in an exact, regular arrangement.

This is achieved through the preceding microstructuring of the surface. The small hollow glass microspheres create a gliding effect between the adhesive and the area to be adhered, enabling precise alignment of the foil.

The spheres sink into the adhesive layer upon application of stronger pressure, and can then be permanently fixed to the base. This technology enables large formatting foils to be adhered.

Lighter Materials

Another, new application comprises of a composite material of metal and hollow glass microspheres. The new material both shines and feels like solid metal, but at the same time, is remarkably light. In order to achieve this, the metal is poured into hollow glass spheres measuring 60 µm.

If the hollow glass microspheres are unevenly distributed, it results in an even surface, which feels completely smooth like metal. With an irregular distribution of the glass, the material appears as if it were marbled with veins.

Although the material is very porous, it appears completely smooth and weighs very little. With the density of aluminum of 2.7 g/cm3 is lowered to 1.2 g/cm3. With zinc from 7 g/cm3, it is reduced by more than half, namely to 3.1 g/cm3.

This article comes from azom edit released

Hollow glass microspheres have great potential in building energy-saving and industrial insulation. Anatase TiO2-modified hollow glass microspheres were prepared by a sol‒gel method in acetic acid-ethanol solution. Scanning electron microscopy, X-ray diffraction, zeta-potential measurements, nitrogen-sorption measurements, and Fourier-transform infrared and ultraviolet-visible-near-infrared diffuse reflectance spectroscopies showed that the alkali modification of the hollow glass microspheres greatly influenced the loading and microstructure of the TiO2 film.

he TiO2 loading could be accurately controlled by ethanol addition and the TiO2 coating time. A mechanism for the TiO2 coating of the hollow glass microspheres surface is proposed. The synergistic action of hydrogen bonding and electrostatic forces resulted in close contact between the hollow glass microspheres and TiO2 sol at pH 3.5.

The effects of different TiO2 loading rates on the reflective and thermal insulation properties were studied. The near-infrared reflectance of 15.9% TiO2 coated on hollow glass microspheres was 96.27%, and the inner surface temperature of the composite pigment coated on aluminum board was reduced by 22.4 °C. The TiO2/hollow glass microspheres composite pigments exhibited excellent solar reflective and thermal insulation properties, so have potential in the construction of exterior walls and roofs.

This article comes from sciencedirect edit released